博彩评级网-博彩网_百家乐投资_全讯网新2

專 欄

首 頁

專 欄

學術報告(Kawamura Shinzo 教授,2019.9.16)

學術舉辦時間 2019年9月16日 10:00—11:00 學術舉辦地點 廣州大學理學實驗樓314
主講人 Kawamura Shinzo (河村新蔵) 主題 Chaos on symbolic dynamical systems

數學學院學術講座  (2019054)

 

 

 

報告人: Kawamura Shinzo (河村新蔵)

單位: 日本山形大學(Yamagata University

職務: 教授

報告時間: 2019916 上午10:00—11:00

報告地點: 廣州大學理學實驗樓314

 

TitleChaos on symbolic dynamical systems

 

ABSTRACTChaos theory is a branch of mathematics focusing on the behavior of dynamical systems that are highly sensitive to initial conditions. ”Chaos” is an interdisciplinary theory stating within the apparent randomness of chaotic complex systems such as f(z)=z^2+C and the deterministic nonlinear system which can result in large differences in a later state, e.g. a butterfly flapping its wings in Brazil can cause a hurricane in Texas.

 

Nowadays, in common usage, ”chaos” means ”a state of disorder”. However, in chaos theory, the term is defined more precisely. Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney for a continuous map f:X—>X on some metric space X as follows [2]: the dynamical system Σ=(X,f) is said to be chaotic if has the following three properties called chaotic properties.

(1) The set of all periodic points of is dense in X. (2) is topologically transitive. (3) has sensitive dependence on initial conditions.

 

We here note that five mathematicians [1] show that if a dynamical system (X; f) satisfies Properties (1) and (2) and the cardinal number of is infinite, then Property (3) automatically holds. Namely two topological properties implies a property of metric space. It was a surprising result.

 

Now, we restrict the compact metric space to the compact metric Cantor space Σ_n consisting of all infinite sequences of integers between 1 and n, and the function to the backward shiftσ_n. It is well-known that the dynamical system (Σ_n,σ_n) is chaotic in the sense of Devaney. In this talk, we consider a kind of dynamical systems (Σ_A,σ_A) associated with n×n matrix with all entries belonging to {0,1}, whereΣ_A is a compact and σ-invarinat subset ofΣ_n andσ_A is the restriction of σ toΣ_A. We show a necessary and sufficient condition for the dynamical system (Σ_A,σ_A) to be chaotic in term of the propery of the following matrix [3]: A+A^2+…+A^n

[1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney’s definition of Chaos, Amer. Math. Monthly, 99(1992), 332-334.

[2] R. L. Devaney, An intorodunction to chaotic dynamical systems, Second Edition, Addision-Wesley, Redwood City, 1989

[3] S. Kawamura, H.Takaegara and A.Uchiyam, Chaotic conditions of dubshift on symbolic dynamical systems, preprint.

 

報告人簡介:河村新蔵,日本山形大學數理科學部教授。1983年畢業于北海道大學,獲得博士學位。1974—2014間,日本山形大學講師,副教授,教授。1988Wales 大學(United Kingdom)留學,2012-至今,北京林業大學客座教授。

主要研究內容:泛函分析,代數算子,模糊理論,動力系統等,分別在Tohoku Math.J.J.Math.Soc.Japan,Proc.Amer.Math.Soc.Math. Scand等學術雜志上發表學術論文60余篇。

 

 

上一條:2019年引智講壇之五十 下一條: 化學化工講壇第五十五、五十六、五十七講

郵編:510006        郵箱:webmaster@gzhu.edu.cn

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

大发888免费送| 全球最大赌博网站| 百家乐打水论坛| 盛世国际娱乐场| 百家乐官网游戏什么时间容易出| 德州扑克发牌员| 百家乐官网园是真的不| 波音百家乐| 伯爵百家乐娱乐场| 百家乐官网微乐| 双鸭山市| 大发888博爱彩| 百家乐官网输惨了| 百家乐官网如何看面| 百家乐分享| 最好的百家乐官网博彩公司| 大发888开户日博备用| 百家乐官网足球| 蒲城县| 威尼斯人娱乐城官方网址| 菲律宾百家乐官网赌场娱乐网规则 | 百家乐官网龙虎玩| 皇冠投注| 百家乐补第三张牌规则| 百家乐官网去澳门| 六合彩开奖号码| 荷规则百家乐的玩法技巧和规则 | 百家乐官网必胜下注法| 大发888娱乐城加盟| 试玩百家乐代理| 淘金百家乐官网的玩法技巧和规则 | 百家乐官网的薇笑打法| 百家乐官网真钱在线| 瑞丰娱乐| 新天地百家乐的玩法技巧和规则| 澳门百家乐官网赌场文| 澳门百家乐官网娱乐城信誉如何 | 百家乐tt娱乐场开户注册 | 百家乐官网大路图| 百家乐官网技巧心得| 信宜市|